Antibacterial properties of hLf1-11 peptide onto titanium surfaces: a comparison study between silanization and surface initiated polymerization.

نویسندگان

  • Maria Godoy-Gallardo
  • Carlos Mas-Moruno
  • Kai Yu
  • José M Manero
  • Francisco J Gil
  • Jayachandran N Kizhakkedathu
  • Daniel Rodriguez
چکیده

Dental implant failure can be associated with infections that develop into peri-implantitis. In order to reduce biofilm formation, several strategies focusing on the use of antimicrobial peptides (AMPs) have been studied. To covalently immobilize these molecules onto metallic substrates, several techniques have been developed, including silanization and polymer brush prepared by surface-initiated atom transfer radical polymerization (ATRP), with varied peptide binding yield and antibacterial performance. The aim of the present study was to compare the efficiency of these methods to immobilize the lactoferrin-derived hLf1-11 antibacterial peptide onto titanium, and evaluate their antibacterial activity in vitro. Smooth titanium samples were coated with hLf1-11 peptide under three different conditions: silanization with 3-aminopropyltriethoxysilane (APTES), and polymer brush based coatings with two different silanes. Peptide presence was determined by X-ray photoelectron spectroscopy, and the mechanical stability of the coatings was studied under ultrasonication. The LDH assays confirmed that HFFs viability and proliferation were no affected by the treatments. The in vitro antibacterial properties of the modified surfaces were tested with two oral strains (Streptococcus sanguinis and Lactobacillus salivarius) showing an outstanding reduction. A higher decrease in bacterial attachment was noticed when samples were modified by ATRP methods compared to silanization. This effect is likely due to the capacity to immobilize more peptide on the surfaces using polymer brushes and the nonfouling nature of polymer PDMA segment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of hLF1-11 immobilization onto chitosan ultrathin films, and its effects on antimicrobial activity.

hLF1-11 (GRRRRSVQWCA) is an antimicrobial peptide (AMP) with high activity against methicillin-resistant Staphylococcus aureus (MRSA), the most prevalent species in implant-associated infection. In this work, the effect of the surface immobilization on hLF1-11 antimicrobial activity was studied. Immobilization was performed onto chitosan thin films as a model for an implant coating due to its r...

متن کامل

Nitroxide-Mediated Radical Polymerization of Styrene Initiated from the Surface of Titanium Oxide Nanoparticles

Titanium dioxide (TiO2) nanoparticles, with an average size of about 45 nm, were encapsulated by polystyrene using in situ nitroxide mediated radical polymerization   in the presence of 3-aminopropyl triethoxy silane (APTES) as a coupling agent and 2, 2, 6, 6-tetramethylpiperidinyl-1-oxy  as a initiator. First, the initiator for NMRP was covalently bonded onto the surface of Titanium dioxide na...

متن کامل

Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity.

Primary amine containing copolymer, poly(N,N-dimethylacrylamide-co-N-(3-aminopropyl)methacrylamide hydrochloride) (poly(DMA-co-APMA)), brushes were synthesized on Ti surface by surface-initiated atom transfer radical polymerization (SI-ATRP) in aqueous conditions. A series of poly(DMA-co-APMA) copolymer brushes on titanium (Ti) surface with different molecular weights, thicknesses, compositions...

متن کامل

Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections.

Prevention of implant-associated infections has been one of the main challenges in orthopaedic surgery. This challenge is further complicated by the concern over the development of antibiotic resistance as a result of using traditional antibiotics for infection prophylaxis. The objective of this study was to develop a technique that enables the loading and local delivery of a unique group of ca...

متن کامل

Biofunctionalization strategies on tantalum-based materials for osseointegrative applications

The use of tantalum as biomaterial for orthopedic applications is gaining considerable attention in the clinical practice because it presents an excellent chemical stability, body fluid resistance, biocompatibility, and it is more osteoconductive than titanium or cobalt-chromium alloys. Nonetheless, metallic biomaterials are commonly bioinert and may not provide fast and long-lasting interactio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 2015